Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Sheng Zhang,* Xiang-Tao Meng, Xue-Mei Li and Wei Wang

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail:
zhangshush@public.qd.sd.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.102$
Data-to-parameter ratio $=10.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Amino-3-(phenoxymethyl)-1H-1,2,4-triazole-5(4H)-thione

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$, the whole molecule is almost planar, with a dihedral angle of $6.9(1)^{\circ}$ between the planes of the triazole and phenyl rings. The molecules are interconnected into a three-dimensional network via intermolecular interactions.

Comment

In recent years, much attention has been focused on the 1,2,4triazole group, which exhibits fungicidal and plant-growth regulating activities, and which shows antibacterial activity against the Puccinia recondite and root-growth regulation for cucumber (Zhao et al., 1998). Derivatives of 1,2,4-triazole containing the 3-aryloxymethyl moiety possess strong biological activities (Shi et al., 2001). In this paper, we report the crystal structure of the title compound, (I) (Fig. 1).

(I)

The bond lengths and angles in (I) are comparable with those observed in related structures (Puviarasan et al., 1999; Govindasamy et al., 1999). The N2-C2 [1.294 (2) Å] bond shows double-bond character, while the other $\mathrm{N}-\mathrm{C}$ bonds have a character intermediate between single and double (Table 1). The $\mathrm{C} 2-\mathrm{C} 3$ bond $[1.487$ (3) \AA] is longer than the corresponding values in previous structures $[1.476$ (2) and 1.474 (3) A], because of π-conjugation effects in the latter. The triazole ring is planar, with atoms N4 and S1 twisted from the plane by 0.017 (1) and 0.037 (8) \AA, respectively. The N4$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{N} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$ torsion angles are -1.1 (3) and $1.7(3)^{\circ}$, respectively. The whole molecule is almost planar, with a dihedral angle of $6.9(1)^{\circ}$ between the planes of the triazole and phenyl rings.

In the crystal structure of (I), the molecules are interconnected into columns by $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 2$ and $\mathrm{N} 4-$

Figure 1
View of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 18 February 2004
Accepted 15 March 2004
Online 24 March 2004

H1N4...S1 hydrogen bonds (Fig. 2). Weak intermolecular N4-H2N4 \cdots N2 and N3-H1N3 \cdots S1 interactions link these columns to form a three-dimensional network (Table 2).

Experimental

The title compound was prepared according to the literature method of Zhang et al. (1993). The solid product was collected by filtration and single crystals of (I) suitable for crystallographic analysis were obtained by slow evaporation of the filtrate at room temperature.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$
$M_{r}=222.27$
Monoclinic, $P 2_{1} / c$
$a=11.251$ (2) \AA 。
$b=6.0066(12) \AA$
$c=15.148$ (3) \AA
$\beta=100.69(3)^{\circ}$
$V=1006.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.468 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1851
\quad reflections
$\theta=1.6-25.0^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.34 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-	1756 independent reflections
\quad detector diffractometer	1559 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.0083$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-13 \rightarrow 0$
$T_{\min }=0.905, T_{\max }=0.948$	$k=-7 \rightarrow 0$
3507 measured reflections	$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.102$
$S=1.09$
1756 reflections
176 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0443 P)^{2}\right. \\
& \quad+0.5065 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

S1-C1	$1.6815(18)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.294(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.366(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.391(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.372(2)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.338(3)$
$\mathrm{N} 1-\mathrm{N} 4$	$1.399(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.487(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$108.99(15)$	$\mathrm{N} 3-\mathrm{C} 1-\mathrm{S} 1$	$129.88(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 4$	$128.50(15)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$127.30(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 4$	$122.45(15)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$111.02(16)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$	$103.57(15)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$128.86(17)$
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 2$	$113.54(15)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.12(16)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 1$	$102.81(15)$		

Table 2
Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1N3 \cdots S $1^{\text {i }}$	0.88 (2)	2.59 (2)	3.3882 (18)	151 (2)
N4-H1N4. . S1 ${ }^{\text {ii }}$	0.94 (3)	2.77 (3)	3.452 (2)	130 (3)
N4-H2N4 \cdots N $2^{\text {iii }}$	0.86 (3)	2.32 (3)	3.150 (3)	162 (2)
C6-H6 ${ }^{\text {N }} \mathrm{N}^{\text {iv }}$	0.94 (2)	2.60 (2)	3.381 (3)	141 (2)

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x,-y, 1-z$; (iii) $x, y-1, z$; (iv) $2-x, 2-y, 1-z$.

Figure 2
Packing diagram of the title compound, showing the columns of molecules. Hydrogen bonds are indicated by dashed lines.

All H atoms were located in a difference Fourier map and refined isotropically.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Natural Science Foundation of China (grant No. 20275020), the Natural Science Foundation of Shandong Province (grant No. Z2002B02) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 03BS081).

References

Govindasamy, L., Velmurugan, D., Senthilvelan, A. \& Suh, I.-H. (1999). Acta Cryst. C55, 2098-2100.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, L., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 951-953.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
Shi, H.-J., Wang, Z.-Y. \& Shi, H.-X. (2001). Acta Pharm. Sin. 36, 310-312.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhang, Z.-Y., Li, M. \& Zhao, L. (1993). Youjihuaxue, 13, 397-402.
Zhao, J., Zhao, Z.-Z., Peng, Y.-B. \& Zhao, G.-F. (1998). Huaxuetongbao, 8, 3538.

